Joshua A. Goode
  • Home
  • Publications
  • Presentations
  • Functions
  • Tutorials
  • CV

On this page

  • Example Data
  • Imputation in Stata
  • Converting Data to mids Object in R
    • Required Packages
    • Data Import
    • Convert to mids Object
  • Testing Result

Importing Imputed Data from Stata into R

Software/R
Software/Stata
Data Management
Methods/Multiple Imputation
A step-by-step guide for importing multiply imputed data from Stata into R as a ‘mids’ object using the mice package.
Author

Joshua A. Goode

Published

July 24, 2025

Although I love R, you might say that Stata was my first love. Up until just a few years ago, my approach was to code everything I could in Stata and use R as a sort of Swiss Army knife for anything I couldn’t do in Stata, as well as for a few things that I just didn’t like doing in Stata (like generating plots). Although I now work almost exclusively in R, I know there are still many folks who continue to work across both packages, much as I used to.

Recently, I was asked about importing multiply imputed data from Stata to R in order to use the slcma package for the structured life course modeling approach. In this post, we’ll walk through the process together, step by step, and verify that everything worked as expected.

Tips
  • All code blocks on this page can be copied by clicking in the upper right corner.
  • Note that some code and output blocks may scroll left and right.
  • As with all content on my site, please feel free to reach out if you have any questions.

Example Data

For this example, we’ll use Stata’s mheart5.dta file, which includes data on 154 fictional patients. Click below for more information about the variables in the dataset.

Show Info About Example Variables
  • attack: Indicator of whether the individual has suffered a heart attack (1 = Yes, 0 = No).
  • smokes: Smoking status of the individual (1 = Smokes, 0 = Does not smoke).
  • age: Age of the individual (in years).
  • bmi: Body mass index of the individual.
  • female: Indicator of sex (1 = Female, 0 = Male).
  • hsgrad: Indicator of whether the individual is a high school graduate (1 = Yes, 0 = No).

Imputation in Stata

Since this tutorial is not focused on imputation itself, we’ll start with an existing imputation script (imputation.do).

However, there are two important points worth mentioning:

  1. We are storing imputed data in the flong format, which assembles all imputations (including the original and imputed datasets) together in “long” form. This means each row corresponds to one observation from one imputation dataset. Therefore, if you have \(m\) imputations and \(n\) observations, there will be \(n \times (m + 1)\) rows.
  2. We need an ID variable to identify each case in our data, so we create a variable called idvar.
// load sample data
webuse "mheart5.dta", clear

// create ID variable
gen idvar = _n

// check missing values
misstable sum

// run imputation
mi set flong
mi register regular idvar female attack smokes hsgrad
mi register imputed bmi age
mi impute chained (regress) age bmi = attack smokes hsgrad female, add(5) rseed(1234) replace

// write to disk
save "/Users/josh/Desktop/imputed_data.dta", replace

Converting Data to mids Object in R

Required Packages

Going forward, we will rely on three R packages: haven, janitor, and mice. If you have not installed these packages, you’ll need to do so. Click below to see the installation code.

Show Code to Install Packages
install.packages("haven")
install.packages("janitor")
install.packages("mice")

Data Import

Let’s start by importing our data with the read_dta() function from the haven package. We’ll also pipe this to the clean_names() function from the janitor package to clean up the variable names.

To run the command, simply specify the path to your dataset that was saved from Stata. You will, of course, need to update this with your own file name and path.

imputed_data <- haven::read_dta("/Users/josh/Desktop/imputed_data.dta") |>
  janitor::clean_names()

The imported data is shown below. Notice that there are 924 rows. There were 154 rows in our original data. Because we created 5 datasets (and the unimputed data is also included), this looks correct \(\left(154 \times \left(5 + 1 \right) = 924 \right)\).

attack smokes age bmi female hsgrad idvar mi_id mi_miss mi_m
0 0 58.46 NA 0 0 1 1 1 0
1 1 54.25 27.69 0 1 2 2 0 0
0 0 36.97 20.99 0 1 3 3 0 0
0 1 43.45 23.35 0 1 4 4 0 0
0 1 67.10 25.80 1 1 5 5 0 0
0 0 48.38 23.39 0 1 6 6 0 0
0 1 38.67 20.48 0 1 7 7 0 0
0 0 43.82 27.46 0 1 8 8 0 0
1 1 69.94 24.49 0 0 9 9 0 0
1 0 69.39 25.60 0 1 10 10 0 0
0 0 65.10 25.48 0 0 11 11 0 0
0 0 42.58 27.52 0 0 12 12 0 0
0 0 64.73 26.63 0 1 13 13 0 0
0 0 NA NA 0 1 14 14 1 0
1 0 60.48 26.80 0 1 15 15 0 0
0 0 60.29 21.11 0 0 16 16 0 0
1 1 55.69 27.43 0 1 17 17 0 0
1 1 63.62 29.89 0 1 18 18 0 0
0 1 60.86 20.84 0 1 19 19 0 0
0 0 65.19 22.73 0 1 20 20 0 0
1 0 50.11 21.59 0 1 21 21 0 0
0 0 54.79 23.67 0 1 22 22 0 0
1 0 47.41 22.66 1 1 23 23 0 0
0 1 49.78 23.22 0 0 24 24 0 0
1 1 66.67 19.62 0 1 25 25 0 0
1 0 50.84 38.24 1 1 26 26 0 0
1 1 52.27 22.28 0 0 27 27 0 0
1 1 68.76 31.04 1 1 28 28 0 0
0 0 48.55 23.08 1 1 29 29 0 0
1 0 NA NA 0 1 30 30 1 0
1 0 42.83 24.44 0 1 31 31 0 0
0 0 51.87 NA 0 1 32 32 1 0
0 0 NA NA 1 1 33 33 1 0
1 1 68.13 25.12 0 0 34 34 0 0
0 0 51.13 26.82 0 1 35 35 0 0
1 0 66.58 27.01 0 1 36 36 0 0
0 0 72.25 30.75 0 0 37 37 0 0
1 0 30.09 NA 0 1 38 38 1 0
0 1 20.74 30.95 0 0 39 39 0 0
1 1 42.12 21.36 0 1 40 40 0 0
0 0 61.66 24.44 0 0 41 41 0 0
0 0 49.49 27.60 0 1 42 42 0 0
0 0 79.56 18.66 0 1 43 43 0 0
1 1 74.95 34.03 0 1 44 44 0 0
1 1 59.07 21.22 0 1 45 45 0 0
0 1 83.78 29.84 1 1 46 46 0 0
1 0 66.83 NA 0 0 47 47 1 0
0 0 59.39 18.58 1 0 48 48 0 0
1 1 68.71 22.45 1 1 49 49 0 0
1 1 77.53 25.94 1 1 50 50 0 0
0 0 49.84 32.03 1 0 51 51 0 0
1 0 NA NA 0 1 52 52 1 0
0 0 51.56 21.46 0 1 53 53 0 0
0 0 50.74 27.81 0 0 54 54 0 0
0 1 NA NA 0 1 55 55 1 0
1 0 37.64 23.98 0 0 56 56 0 0
1 0 46.18 NA 0 1 57 57 1 0
1 0 42.56 21.13 0 1 58 58 0 0
0 0 59.95 19.84 1 1 59 59 0 0
0 0 60.55 20.57 0 1 60 60 0 0
0 1 29.96 NA 0 1 61 61 1 0
0 0 50.08 24.23 0 1 62 62 0 0
0 1 59.52 NA 1 1 63 63 1 0
1 0 68.77 24.94 0 1 64 64 0 0
0 1 38.40 23.47 1 1 65 65 0 0
1 1 45.12 NA 0 0 66 66 1 0
1 0 53.65 20.62 1 1 67 67 0 0
0 0 NA NA 1 0 68 68 1 0
0 0 52.45 36.01 0 1 69 69 0 0
0 0 47.76 NA 0 1 70 70 1 0
1 1 47.66 26.29 0 1 71 71 0 0
0 0 47.99 19.93 1 1 72 72 0 0
0 0 52.68 26.93 0 1 73 73 0 0
0 0 49.76 21.88 0 1 74 74 0 0
1 0 NA NA 0 1 75 75 1 0
0 0 54.29 32.38 0 1 76 76 0 0
1 1 45.41 22.89 1 0 77 77 0 0
1 0 49.79 32.00 0 1 78 78 0 0
1 1 45.89 21.74 0 1 79 79 0 0
0 1 65.40 17.77 0 0 80 80 0 0
1 0 55.02 29.13 1 0 81 81 0 0
1 0 62.89 26.02 1 1 82 82 0 0
0 1 NA NA 1 1 83 83 1 0
0 0 71.56 25.32 0 1 84 84 0 0
1 1 52.78 28.00 0 1 85 85 0 0
0 0 50.65 31.09 0 1 86 86 0 0
1 1 51.59 20.34 0 1 87 87 0 0
1 0 51.21 22.87 0 1 88 88 0 0
0 1 55.11 21.49 0 1 89 89 0 0
0 0 57.04 27.25 0 1 90 90 0 0
0 1 59.26 23.94 1 0 91 91 0 0
1 1 52.44 27.56 0 0 92 92 0 0
1 1 66.35 31.15 0 1 93 93 0 0
1 1 72.68 21.47 1 1 94 94 0 0
0 1 62.00 20.36 0 0 95 95 0 0
1 0 61.34 24.49 0 1 96 96 0 0
0 0 73.58 25.33 0 1 97 97 0 0
0 0 69.49 17.23 0 0 98 98 0 0
1 1 70.98 30.34 1 1 99 99 0 0
0 0 51.81 23.47 1 0 100 100 0 0
1 1 57.75 24.68 0 0 101 101 0 0
1 1 65.96 23.72 0 1 102 102 0 0
0 0 42.13 26.81 0 1 103 103 0 0
1 1 81.98 23.89 1 1 104 104 0 0
0 1 64.40 25.11 0 0 105 105 0 0
0 1 42.23 24.42 0 1 106 106 0 0
0 0 69.90 24.90 0 1 107 107 0 0
0 1 NA NA 0 1 108 108 1 0
0 0 61.96 30.50 0 0 109 109 0 0
1 1 63.20 NA 0 1 110 110 1 0
1 1 51.04 31.34 0 1 111 111 0 0
0 0 43.06 NA 0 1 112 112 1 0
0 0 76.62 20.39 0 1 113 113 0 0
1 0 71.26 21.80 0 1 114 114 0 0
1 1 57.65 NA 1 1 115 115 1 0
1 1 53.92 23.94 1 0 116 116 0 0
0 0 47.89 20.92 1 1 117 117 0 0
1 0 79.31 30.22 0 0 118 118 0 0
1 0 41.89 29.45 0 1 119 119 0 0
1 0 68.64 27.37 1 0 120 120 0 0
1 1 53.77 29.80 0 0 121 121 0 0
1 0 61.11 18.35 0 1 122 122 0 0
0 1 57.81 NA 1 1 123 123 1 0
0 1 NA NA 0 1 124 124 1 0
0 0 44.35 24.64 0 1 125 125 0 0
0 0 47.26 26.53 1 1 126 126 0 0
1 0 77.66 25.19 1 1 127 127 0 0
0 0 40.83 25.05 1 1 128 128 0 0
1 1 36.58 31.22 1 1 129 129 0 0
0 0 58.47 18.45 0 1 130 130 0 0
0 0 60.14 23.27 0 1 131 131 0 0
0 0 45.01 NA 0 1 132 132 1 0
0 1 66.43 23.97 0 1 133 133 0 0
0 0 44.86 25.20 0 1 134 134 0 0
1 1 62.11 29.63 0 0 135 135 0 0
0 1 42.81 32.56 0 1 136 136 0 0
1 1 68.79 30.95 0 1 137 137 0 0
0 0 NA NA 0 0 138 138 1 0
0 0 39.60 24.63 1 1 139 139 0 0
0 1 68.51 21.97 0 1 140 140 0 0
1 1 55.04 28.30 0 1 141 141 0 0
0 0 58.47 24.47 0 0 142 142 0 0
1 1 65.16 NA 0 1 143 143 1 0
0 0 45.48 NA 1 1 144 144 1 0
1 0 51.01 30.08 0 0 145 145 0 0
1 1 67.36 25.21 0 0 146 146 0 0
0 1 NA NA 0 1 147 147 1 0
1 0 73.62 26.22 0 1 148 148 0 0
0 0 54.74 29.80 0 1 149 149 0 0
0 0 62.59 27.61 0 1 150 150 0 0
1 1 50.92 22.08 0 1 151 151 0 0
0 0 68.98 21.65 1 1 152 152 0 0
0 0 51.87 21.88 0 1 153 153 0 0
1 1 55.15 24.40 0 1 154 154 0 0
0 0 58.46 23.74 0 0 1 1 NA 1
1 1 54.25 27.69 0 1 2 2 NA 1
0 0 36.97 20.99 0 1 3 3 NA 1
0 1 43.45 23.35 0 1 4 4 NA 1
0 1 67.10 25.80 1 1 5 5 NA 1
0 0 48.38 23.39 0 1 6 6 NA 1
0 1 38.67 20.48 0 1 7 7 NA 1
0 0 43.82 27.46 0 1 8 8 NA 1
1 1 69.94 24.49 0 0 9 9 NA 1
1 0 69.39 25.60 0 1 10 10 NA 1
0 0 65.10 25.48 0 0 11 11 NA 1
0 0 42.58 27.52 0 0 12 12 NA 1
0 0 64.73 26.63 0 1 13 13 NA 1
0 0 68.44 16.52 0 1 14 14 NA 1
1 0 60.48 26.80 0 1 15 15 NA 1
0 0 60.29 21.11 0 0 16 16 NA 1
1 1 55.69 27.43 0 1 17 17 NA 1
1 1 63.62 29.89 0 1 18 18 NA 1
0 1 60.86 20.84 0 1 19 19 NA 1
0 0 65.19 22.73 0 1 20 20 NA 1
1 0 50.11 21.59 0 1 21 21 NA 1
0 0 54.79 23.67 0 1 22 22 NA 1
1 0 47.41 22.66 1 1 23 23 NA 1
0 1 49.78 23.22 0 0 24 24 NA 1
1 1 66.67 19.62 0 1 25 25 NA 1
1 0 50.84 38.24 1 1 26 26 NA 1
1 1 52.27 22.28 0 0 27 27 NA 1
1 1 68.76 31.04 1 1 28 28 NA 1
0 0 48.55 23.08 1 1 29 29 NA 1
1 0 48.49 22.55 0 1 30 30 NA 1
1 0 42.83 24.44 0 1 31 31 NA 1
0 0 51.87 19.91 0 1 32 32 NA 1
0 0 56.87 29.91 1 1 33 33 NA 1
1 1 68.13 25.12 0 0 34 34 NA 1
0 0 51.13 26.82 0 1 35 35 NA 1
1 0 66.58 27.01 0 1 36 36 NA 1
0 0 72.25 30.75 0 0 37 37 NA 1
1 0 30.09 26.95 0 1 38 38 NA 1
0 1 20.74 30.95 0 0 39 39 NA 1
1 1 42.12 21.36 0 1 40 40 NA 1
0 0 61.66 24.44 0 0 41 41 NA 1
0 0 49.49 27.60 0 1 42 42 NA 1
0 0 79.56 18.66 0 1 43 43 NA 1
1 1 74.95 34.03 0 1 44 44 NA 1
1 1 59.07 21.22 0 1 45 45 NA 1
0 1 83.78 29.84 1 1 46 46 NA 1
1 0 66.83 29.49 0 0 47 47 NA 1
0 0 59.39 18.58 1 0 48 48 NA 1
1 1 68.71 22.45 1 1 49 49 NA 1
1 1 77.53 25.94 1 1 50 50 NA 1
0 0 49.84 32.03 1 0 51 51 NA 1
1 0 30.83 23.65 0 1 52 52 NA 1
0 0 51.56 21.46 0 1 53 53 NA 1
0 0 50.74 27.81 0 0 54 54 NA 1
0 1 45.78 24.02 0 1 55 55 NA 1
1 0 37.64 23.98 0 0 56 56 NA 1
1 0 46.18 29.98 0 1 57 57 NA 1
1 0 42.56 21.13 0 1 58 58 NA 1
0 0 59.95 19.84 1 1 59 59 NA 1
0 0 60.55 20.57 0 1 60 60 NA 1
0 1 29.96 24.72 0 1 61 61 NA 1
0 0 50.08 24.23 0 1 62 62 NA 1
0 1 59.52 29.92 1 1 63 63 NA 1
1 0 68.77 24.94 0 1 64 64 NA 1
0 1 38.40 23.47 1 1 65 65 NA 1
1 1 45.12 18.86 0 0 66 66 NA 1
1 0 53.65 20.62 1 1 67 67 NA 1
0 0 56.16 25.63 1 0 68 68 NA 1
0 0 52.45 36.01 0 1 69 69 NA 1
0 0 47.76 25.52 0 1 70 70 NA 1
1 1 47.66 26.29 0 1 71 71 NA 1
0 0 47.99 19.93 1 1 72 72 NA 1
0 0 52.68 26.93 0 1 73 73 NA 1
0 0 49.76 21.88 0 1 74 74 NA 1
1 0 60.37 18.67 0 1 75 75 NA 1
0 0 54.29 32.38 0 1 76 76 NA 1
1 1 45.41 22.89 1 0 77 77 NA 1
1 0 49.79 32.00 0 1 78 78 NA 1
1 1 45.89 21.74 0 1 79 79 NA 1
0 1 65.40 17.77 0 0 80 80 NA 1
1 0 55.02 29.13 1 0 81 81 NA 1
1 0 62.89 26.02 1 1 82 82 NA 1
0 1 55.84 24.54 1 1 83 83 NA 1
0 0 71.56 25.32 0 1 84 84 NA 1
1 1 52.78 28.00 0 1 85 85 NA 1
0 0 50.65 31.09 0 1 86 86 NA 1
1 1 51.59 20.34 0 1 87 87 NA 1
1 0 51.21 22.87 0 1 88 88 NA 1
0 1 55.11 21.49 0 1 89 89 NA 1
0 0 57.04 27.25 0 1 90 90 NA 1
0 1 59.26 23.94 1 0 91 91 NA 1
1 1 52.44 27.56 0 0 92 92 NA 1
1 1 66.35 31.15 0 1 93 93 NA 1
1 1 72.68 21.47 1 1 94 94 NA 1
0 1 62.00 20.36 0 0 95 95 NA 1
1 0 61.34 24.49 0 1 96 96 NA 1
0 0 73.58 25.33 0 1 97 97 NA 1
0 0 69.49 17.23 0 0 98 98 NA 1
1 1 70.98 30.34 1 1 99 99 NA 1
0 0 51.81 23.47 1 0 100 100 NA 1
1 1 57.75 24.68 0 0 101 101 NA 1
1 1 65.96 23.72 0 1 102 102 NA 1
0 0 42.13 26.81 0 1 103 103 NA 1
1 1 81.98 23.89 1 1 104 104 NA 1
0 1 64.40 25.11 0 0 105 105 NA 1
0 1 42.23 24.42 0 1 106 106 NA 1
0 0 69.90 24.90 0 1 107 107 NA 1
0 1 59.85 25.57 0 1 108 108 NA 1
0 0 61.96 30.50 0 0 109 109 NA 1
1 1 63.20 14.80 0 1 110 110 NA 1
1 1 51.04 31.34 0 1 111 111 NA 1
0 0 43.06 20.67 0 1 112 112 NA 1
0 0 76.62 20.39 0 1 113 113 NA 1
1 0 71.26 21.80 0 1 114 114 NA 1
1 1 57.65 29.90 1 1 115 115 NA 1
1 1 53.92 23.94 1 0 116 116 NA 1
0 0 47.89 20.92 1 1 117 117 NA 1
1 0 79.31 30.22 0 0 118 118 NA 1
1 0 41.89 29.45 0 1 119 119 NA 1
1 0 68.64 27.37 1 0 120 120 NA 1
1 1 53.77 29.80 0 0 121 121 NA 1
1 0 61.11 18.35 0 1 122 122 NA 1
0 1 57.81 25.77 1 1 123 123 NA 1
0 1 45.27 22.93 0 1 124 124 NA 1
0 0 44.35 24.64 0 1 125 125 NA 1
0 0 47.26 26.53 1 1 126 126 NA 1
1 0 77.66 25.19 1 1 127 127 NA 1
0 0 40.83 25.05 1 1 128 128 NA 1
1 1 36.58 31.22 1 1 129 129 NA 1
0 0 58.47 18.45 0 1 130 130 NA 1
0 0 60.14 23.27 0 1 131 131 NA 1
0 0 45.01 25.68 0 1 132 132 NA 1
0 1 66.43 23.97 0 1 133 133 NA 1
0 0 44.86 25.20 0 1 134 134 NA 1
1 1 62.11 29.63 0 0 135 135 NA 1
0 1 42.81 32.56 0 1 136 136 NA 1
1 1 68.79 30.95 0 1 137 137 NA 1
0 0 58.50 27.28 0 0 138 138 NA 1
0 0 39.60 24.63 1 1 139 139 NA 1
0 1 68.51 21.97 0 1 140 140 NA 1
1 1 55.04 28.30 0 1 141 141 NA 1
0 0 58.47 24.47 0 0 142 142 NA 1
1 1 65.16 21.97 0 1 143 143 NA 1
0 0 45.48 19.24 1 1 144 144 NA 1
1 0 51.01 30.08 0 0 145 145 NA 1
1 1 67.36 25.21 0 0 146 146 NA 1
0 1 80.90 23.33 0 1 147 147 NA 1
1 0 73.62 26.22 0 1 148 148 NA 1
0 0 54.74 29.80 0 1 149 149 NA 1
0 0 62.59 27.61 0 1 150 150 NA 1
1 1 50.92 22.08 0 1 151 151 NA 1
0 0 68.98 21.65 1 1 152 152 NA 1
0 0 51.87 21.88 0 1 153 153 NA 1
1 1 55.15 24.40 0 1 154 154 NA 1
0 0 58.46 22.83 0 0 1 1 NA 2
1 1 54.25 27.69 0 1 2 2 NA 2
0 0 36.97 20.99 0 1 3 3 NA 2
0 1 43.45 23.35 0 1 4 4 NA 2
0 1 67.10 25.80 1 1 5 5 NA 2
0 0 48.38 23.39 0 1 6 6 NA 2
0 1 38.67 20.48 0 1 7 7 NA 2
0 0 43.82 27.46 0 1 8 8 NA 2
1 1 69.94 24.49 0 0 9 9 NA 2
1 0 69.39 25.60 0 1 10 10 NA 2
0 0 65.10 25.48 0 0 11 11 NA 2
0 0 42.58 27.52 0 0 12 12 NA 2
0 0 64.73 26.63 0 1 13 13 NA 2
0 0 59.21 24.99 0 1 14 14 NA 2
1 0 60.48 26.80 0 1 15 15 NA 2
0 0 60.29 21.11 0 0 16 16 NA 2
1 1 55.69 27.43 0 1 17 17 NA 2
1 1 63.62 29.89 0 1 18 18 NA 2
0 1 60.86 20.84 0 1 19 19 NA 2
0 0 65.19 22.73 0 1 20 20 NA 2
1 0 50.11 21.59 0 1 21 21 NA 2
0 0 54.79 23.67 0 1 22 22 NA 2
1 0 47.41 22.66 1 1 23 23 NA 2
0 1 49.78 23.22 0 0 24 24 NA 2
1 1 66.67 19.62 0 1 25 25 NA 2
1 0 50.84 38.24 1 1 26 26 NA 2
1 1 52.27 22.28 0 0 27 27 NA 2
1 1 68.76 31.04 1 1 28 28 NA 2
0 0 48.55 23.08 1 1 29 29 NA 2
1 0 43.65 26.72 0 1 30 30 NA 2
1 0 42.83 24.44 0 1 31 31 NA 2
0 0 51.87 21.00 0 1 32 32 NA 2
0 0 46.46 23.04 1 1 33 33 NA 2
1 1 68.13 25.12 0 0 34 34 NA 2
0 0 51.13 26.82 0 1 35 35 NA 2
1 0 66.58 27.01 0 1 36 36 NA 2
0 0 72.25 30.75 0 0 37 37 NA 2
1 0 30.09 25.22 0 1 38 38 NA 2
0 1 20.74 30.95 0 0 39 39 NA 2
1 1 42.12 21.36 0 1 40 40 NA 2
0 0 61.66 24.44 0 0 41 41 NA 2
0 0 49.49 27.60 0 1 42 42 NA 2
0 0 79.56 18.66 0 1 43 43 NA 2
1 1 74.95 34.03 0 1 44 44 NA 2
1 1 59.07 21.22 0 1 45 45 NA 2
0 1 83.78 29.84 1 1 46 46 NA 2
1 0 66.83 25.17 0 0 47 47 NA 2
0 0 59.39 18.58 1 0 48 48 NA 2
1 1 68.71 22.45 1 1 49 49 NA 2
1 1 77.53 25.94 1 1 50 50 NA 2
0 0 49.84 32.03 1 0 51 51 NA 2
1 0 76.96 28.69 0 1 52 52 NA 2
0 0 51.56 21.46 0 1 53 53 NA 2
0 0 50.74 27.81 0 0 54 54 NA 2
0 1 43.09 22.27 0 1 55 55 NA 2
1 0 37.64 23.98 0 0 56 56 NA 2
1 0 46.18 18.40 0 1 57 57 NA 2
1 0 42.56 21.13 0 1 58 58 NA 2
0 0 59.95 19.84 1 1 59 59 NA 2
0 0 60.55 20.57 0 1 60 60 NA 2
0 1 29.96 25.28 0 1 61 61 NA 2
0 0 50.08 24.23 0 1 62 62 NA 2
0 1 59.52 16.72 1 1 63 63 NA 2
1 0 68.77 24.94 0 1 64 64 NA 2
0 1 38.40 23.47 1 1 65 65 NA 2
1 1 45.12 25.47 0 0 66 66 NA 2
1 0 53.65 20.62 1 1 67 67 NA 2
0 0 60.44 23.49 1 0 68 68 NA 2
0 0 52.45 36.01 0 1 69 69 NA 2
0 0 47.76 24.47 0 1 70 70 NA 2
1 1 47.66 26.29 0 1 71 71 NA 2
0 0 47.99 19.93 1 1 72 72 NA 2
0 0 52.68 26.93 0 1 73 73 NA 2
0 0 49.76 21.88 0 1 74 74 NA 2
1 0 58.15 27.84 0 1 75 75 NA 2
0 0 54.29 32.38 0 1 76 76 NA 2
1 1 45.41 22.89 1 0 77 77 NA 2
1 0 49.79 32.00 0 1 78 78 NA 2
1 1 45.89 21.74 0 1 79 79 NA 2
0 1 65.40 17.77 0 0 80 80 NA 2
1 0 55.02 29.13 1 0 81 81 NA 2
1 0 62.89 26.02 1 1 82 82 NA 2
0 1 72.68 19.33 1 1 83 83 NA 2
0 0 71.56 25.32 0 1 84 84 NA 2
1 1 52.78 28.00 0 1 85 85 NA 2
0 0 50.65 31.09 0 1 86 86 NA 2
1 1 51.59 20.34 0 1 87 87 NA 2
1 0 51.21 22.87 0 1 88 88 NA 2
0 1 55.11 21.49 0 1 89 89 NA 2
0 0 57.04 27.25 0 1 90 90 NA 2
0 1 59.26 23.94 1 0 91 91 NA 2
1 1 52.44 27.56 0 0 92 92 NA 2
1 1 66.35 31.15 0 1 93 93 NA 2
1 1 72.68 21.47 1 1 94 94 NA 2
0 1 62.00 20.36 0 0 95 95 NA 2
1 0 61.34 24.49 0 1 96 96 NA 2
0 0 73.58 25.33 0 1 97 97 NA 2
0 0 69.49 17.23 0 0 98 98 NA 2
1 1 70.98 30.34 1 1 99 99 NA 2
0 0 51.81 23.47 1 0 100 100 NA 2
1 1 57.75 24.68 0 0 101 101 NA 2
1 1 65.96 23.72 0 1 102 102 NA 2
0 0 42.13 26.81 0 1 103 103 NA 2
1 1 81.98 23.89 1 1 104 104 NA 2
0 1 64.40 25.11 0 0 105 105 NA 2
0 1 42.23 24.42 0 1 106 106 NA 2
0 0 69.90 24.90 0 1 107 107 NA 2
0 1 48.00 22.69 0 1 108 108 NA 2
0 0 61.96 30.50 0 0 109 109 NA 2
1 1 63.20 23.95 0 1 110 110 NA 2
1 1 51.04 31.34 0 1 111 111 NA 2
0 0 43.06 21.56 0 1 112 112 NA 2
0 0 76.62 20.39 0 1 113 113 NA 2
1 0 71.26 21.80 0 1 114 114 NA 2
1 1 57.65 32.49 1 1 115 115 NA 2
1 1 53.92 23.94 1 0 116 116 NA 2
0 0 47.89 20.92 1 1 117 117 NA 2
1 0 79.31 30.22 0 0 118 118 NA 2
1 0 41.89 29.45 0 1 119 119 NA 2
1 0 68.64 27.37 1 0 120 120 NA 2
1 1 53.77 29.80 0 0 121 121 NA 2
1 0 61.11 18.35 0 1 122 122 NA 2
0 1 57.81 29.63 1 1 123 123 NA 2
0 1 50.37 26.25 0 1 124 124 NA 2
0 0 44.35 24.64 0 1 125 125 NA 2
0 0 47.26 26.53 1 1 126 126 NA 2
1 0 77.66 25.19 1 1 127 127 NA 2
0 0 40.83 25.05 1 1 128 128 NA 2
1 1 36.58 31.22 1 1 129 129 NA 2
0 0 58.47 18.45 0 1 130 130 NA 2
0 0 60.14 23.27 0 1 131 131 NA 2
0 0 45.01 29.32 0 1 132 132 NA 2
0 1 66.43 23.97 0 1 133 133 NA 2
0 0 44.86 25.20 0 1 134 134 NA 2
1 1 62.11 29.63 0 0 135 135 NA 2
0 1 42.81 32.56 0 1 136 136 NA 2
1 1 68.79 30.95 0 1 137 137 NA 2
0 0 46.19 35.60 0 0 138 138 NA 2
0 0 39.60 24.63 1 1 139 139 NA 2
0 1 68.51 21.97 0 1 140 140 NA 2
1 1 55.04 28.30 0 1 141 141 NA 2
0 0 58.47 24.47 0 0 142 142 NA 2
1 1 65.16 23.67 0 1 143 143 NA 2
0 0 45.48 32.25 1 1 144 144 NA 2
1 0 51.01 30.08 0 0 145 145 NA 2
1 1 67.36 25.21 0 0 146 146 NA 2
0 1 46.63 24.43 0 1 147 147 NA 2
1 0 73.62 26.22 0 1 148 148 NA 2
0 0 54.74 29.80 0 1 149 149 NA 2
0 0 62.59 27.61 0 1 150 150 NA 2
1 1 50.92 22.08 0 1 151 151 NA 2
0 0 68.98 21.65 1 1 152 152 NA 2
0 0 51.87 21.88 0 1 153 153 NA 2
1 1 55.15 24.40 0 1 154 154 NA 2
0 0 58.46 22.13 0 0 1 1 NA 3
1 1 54.25 27.69 0 1 2 2 NA 3
0 0 36.97 20.99 0 1 3 3 NA 3
0 1 43.45 23.35 0 1 4 4 NA 3
0 1 67.10 25.80 1 1 5 5 NA 3
0 0 48.38 23.39 0 1 6 6 NA 3
0 1 38.67 20.48 0 1 7 7 NA 3
0 0 43.82 27.46 0 1 8 8 NA 3
1 1 69.94 24.49 0 0 9 9 NA 3
1 0 69.39 25.60 0 1 10 10 NA 3
0 0 65.10 25.48 0 0 11 11 NA 3
0 0 42.58 27.52 0 0 12 12 NA 3
0 0 64.73 26.63 0 1 13 13 NA 3
0 0 31.30 23.80 0 1 14 14 NA 3
1 0 60.48 26.80 0 1 15 15 NA 3
0 0 60.29 21.11 0 0 16 16 NA 3
1 1 55.69 27.43 0 1 17 17 NA 3
1 1 63.62 29.89 0 1 18 18 NA 3
0 1 60.86 20.84 0 1 19 19 NA 3
0 0 65.19 22.73 0 1 20 20 NA 3
1 0 50.11 21.59 0 1 21 21 NA 3
0 0 54.79 23.67 0 1 22 22 NA 3
1 0 47.41 22.66 1 1 23 23 NA 3
0 1 49.78 23.22 0 0 24 24 NA 3
1 1 66.67 19.62 0 1 25 25 NA 3
1 0 50.84 38.24 1 1 26 26 NA 3
1 1 52.27 22.28 0 0 27 27 NA 3
1 1 68.76 31.04 1 1 28 28 NA 3
0 0 48.55 23.08 1 1 29 29 NA 3
1 0 70.47 17.53 0 1 30 30 NA 3
1 0 42.83 24.44 0 1 31 31 NA 3
0 0 51.87 21.71 0 1 32 32 NA 3
0 0 65.37 18.29 1 1 33 33 NA 3
1 1 68.13 25.12 0 0 34 34 NA 3
0 0 51.13 26.82 0 1 35 35 NA 3
1 0 66.58 27.01 0 1 36 36 NA 3
0 0 72.25 30.75 0 0 37 37 NA 3
1 0 30.09 29.01 0 1 38 38 NA 3
0 1 20.74 30.95 0 0 39 39 NA 3
1 1 42.12 21.36 0 1 40 40 NA 3
0 0 61.66 24.44 0 0 41 41 NA 3
0 0 49.49 27.60 0 1 42 42 NA 3
0 0 79.56 18.66 0 1 43 43 NA 3
1 1 74.95 34.03 0 1 44 44 NA 3
1 1 59.07 21.22 0 1 45 45 NA 3
0 1 83.78 29.84 1 1 46 46 NA 3
1 0 66.83 26.92 0 0 47 47 NA 3
0 0 59.39 18.58 1 0 48 48 NA 3
1 1 68.71 22.45 1 1 49 49 NA 3
1 1 77.53 25.94 1 1 50 50 NA 3
0 0 49.84 32.03 1 0 51 51 NA 3
1 0 52.84 34.43 0 1 52 52 NA 3
0 0 51.56 21.46 0 1 53 53 NA 3
0 0 50.74 27.81 0 0 54 54 NA 3
0 1 38.75 21.12 0 1 55 55 NA 3
1 0 37.64 23.98 0 0 56 56 NA 3
1 0 46.18 22.58 0 1 57 57 NA 3
1 0 42.56 21.13 0 1 58 58 NA 3
0 0 59.95 19.84 1 1 59 59 NA 3
0 0 60.55 20.57 0 1 60 60 NA 3
0 1 29.96 27.02 0 1 61 61 NA 3
0 0 50.08 24.23 0 1 62 62 NA 3
0 1 59.52 21.10 1 1 63 63 NA 3
1 0 68.77 24.94 0 1 64 64 NA 3
0 1 38.40 23.47 1 1 65 65 NA 3
1 1 45.12 23.55 0 0 66 66 NA 3
1 0 53.65 20.62 1 1 67 67 NA 3
0 0 55.10 22.28 1 0 68 68 NA 3
0 0 52.45 36.01 0 1 69 69 NA 3
0 0 47.76 28.40 0 1 70 70 NA 3
1 1 47.66 26.29 0 1 71 71 NA 3
0 0 47.99 19.93 1 1 72 72 NA 3
0 0 52.68 26.93 0 1 73 73 NA 3
0 0 49.76 21.88 0 1 74 74 NA 3
1 0 87.54 29.23 0 1 75 75 NA 3
0 0 54.29 32.38 0 1 76 76 NA 3
1 1 45.41 22.89 1 0 77 77 NA 3
1 0 49.79 32.00 0 1 78 78 NA 3
1 1 45.89 21.74 0 1 79 79 NA 3
0 1 65.40 17.77 0 0 80 80 NA 3
1 0 55.02 29.13 1 0 81 81 NA 3
1 0 62.89 26.02 1 1 82 82 NA 3
0 1 46.34 22.85 1 1 83 83 NA 3
0 0 71.56 25.32 0 1 84 84 NA 3
1 1 52.78 28.00 0 1 85 85 NA 3
0 0 50.65 31.09 0 1 86 86 NA 3
1 1 51.59 20.34 0 1 87 87 NA 3
1 0 51.21 22.87 0 1 88 88 NA 3
0 1 55.11 21.49 0 1 89 89 NA 3
0 0 57.04 27.25 0 1 90 90 NA 3
0 1 59.26 23.94 1 0 91 91 NA 3
1 1 52.44 27.56 0 0 92 92 NA 3
1 1 66.35 31.15 0 1 93 93 NA 3
1 1 72.68 21.47 1 1 94 94 NA 3
0 1 62.00 20.36 0 0 95 95 NA 3
1 0 61.34 24.49 0 1 96 96 NA 3
0 0 73.58 25.33 0 1 97 97 NA 3
0 0 69.49 17.23 0 0 98 98 NA 3
1 1 70.98 30.34 1 1 99 99 NA 3
0 0 51.81 23.47 1 0 100 100 NA 3
1 1 57.75 24.68 0 0 101 101 NA 3
1 1 65.96 23.72 0 1 102 102 NA 3
0 0 42.13 26.81 0 1 103 103 NA 3
1 1 81.98 23.89 1 1 104 104 NA 3
0 1 64.40 25.11 0 0 105 105 NA 3
0 1 42.23 24.42 0 1 106 106 NA 3
0 0 69.90 24.90 0 1 107 107 NA 3
0 1 58.94 27.67 0 1 108 108 NA 3
0 0 61.96 30.50 0 0 109 109 NA 3
1 1 63.20 26.23 0 1 110 110 NA 3
1 1 51.04 31.34 0 1 111 111 NA 3
0 0 43.06 29.39 0 1 112 112 NA 3
0 0 76.62 20.39 0 1 113 113 NA 3
1 0 71.26 21.80 0 1 114 114 NA 3
1 1 57.65 31.36 1 1 115 115 NA 3
1 1 53.92 23.94 1 0 116 116 NA 3
0 0 47.89 20.92 1 1 117 117 NA 3
1 0 79.31 30.22 0 0 118 118 NA 3
1 0 41.89 29.45 0 1 119 119 NA 3
1 0 68.64 27.37 1 0 120 120 NA 3
1 1 53.77 29.80 0 0 121 121 NA 3
1 0 61.11 18.35 0 1 122 122 NA 3
0 1 57.81 21.38 1 1 123 123 NA 3
0 1 75.94 22.16 0 1 124 124 NA 3
0 0 44.35 24.64 0 1 125 125 NA 3
0 0 47.26 26.53 1 1 126 126 NA 3
1 0 77.66 25.19 1 1 127 127 NA 3
0 0 40.83 25.05 1 1 128 128 NA 3
1 1 36.58 31.22 1 1 129 129 NA 3
0 0 58.47 18.45 0 1 130 130 NA 3
0 0 60.14 23.27 0 1 131 131 NA 3
0 0 45.01 24.42 0 1 132 132 NA 3
0 1 66.43 23.97 0 1 133 133 NA 3
0 0 44.86 25.20 0 1 134 134 NA 3
1 1 62.11 29.63 0 0 135 135 NA 3
0 1 42.81 32.56 0 1 136 136 NA 3
1 1 68.79 30.95 0 1 137 137 NA 3
0 0 59.36 25.69 0 0 138 138 NA 3
0 0 39.60 24.63 1 1 139 139 NA 3
0 1 68.51 21.97 0 1 140 140 NA 3
1 1 55.04 28.30 0 1 141 141 NA 3
0 0 58.47 24.47 0 0 142 142 NA 3
1 1 65.16 23.51 0 1 143 143 NA 3
0 0 45.48 22.54 1 1 144 144 NA 3
1 0 51.01 30.08 0 0 145 145 NA 3
1 1 67.36 25.21 0 0 146 146 NA 3
0 1 86.16 25.17 0 1 147 147 NA 3
1 0 73.62 26.22 0 1 148 148 NA 3
0 0 54.74 29.80 0 1 149 149 NA 3
0 0 62.59 27.61 0 1 150 150 NA 3
1 1 50.92 22.08 0 1 151 151 NA 3
0 0 68.98 21.65 1 1 152 152 NA 3
0 0 51.87 21.88 0 1 153 153 NA 3
1 1 55.15 24.40 0 1 154 154 NA 3
0 0 58.46 22.44 0 0 1 1 NA 4
1 1 54.25 27.69 0 1 2 2 NA 4
0 0 36.97 20.99 0 1 3 3 NA 4
0 1 43.45 23.35 0 1 4 4 NA 4
0 1 67.10 25.80 1 1 5 5 NA 4
0 0 48.38 23.39 0 1 6 6 NA 4
0 1 38.67 20.48 0 1 7 7 NA 4
0 0 43.82 27.46 0 1 8 8 NA 4
1 1 69.94 24.49 0 0 9 9 NA 4
1 0 69.39 25.60 0 1 10 10 NA 4
0 0 65.10 25.48 0 0 11 11 NA 4
0 0 42.58 27.52 0 0 12 12 NA 4
0 0 64.73 26.63 0 1 13 13 NA 4
0 0 38.66 20.46 0 1 14 14 NA 4
1 0 60.48 26.80 0 1 15 15 NA 4
0 0 60.29 21.11 0 0 16 16 NA 4
1 1 55.69 27.43 0 1 17 17 NA 4
1 1 63.62 29.89 0 1 18 18 NA 4
0 1 60.86 20.84 0 1 19 19 NA 4
0 0 65.19 22.73 0 1 20 20 NA 4
1 0 50.11 21.59 0 1 21 21 NA 4
0 0 54.79 23.67 0 1 22 22 NA 4
1 0 47.41 22.66 1 1 23 23 NA 4
0 1 49.78 23.22 0 0 24 24 NA 4
1 1 66.67 19.62 0 1 25 25 NA 4
1 0 50.84 38.24 1 1 26 26 NA 4
1 1 52.27 22.28 0 0 27 27 NA 4
1 1 68.76 31.04 1 1 28 28 NA 4
0 0 48.55 23.08 1 1 29 29 NA 4
1 0 66.07 25.06 0 1 30 30 NA 4
1 0 42.83 24.44 0 1 31 31 NA 4
0 0 51.87 18.44 0 1 32 32 NA 4
0 0 49.85 28.29 1 1 33 33 NA 4
1 1 68.13 25.12 0 0 34 34 NA 4
0 0 51.13 26.82 0 1 35 35 NA 4
1 0 66.58 27.01 0 1 36 36 NA 4
0 0 72.25 30.75 0 0 37 37 NA 4
1 0 30.09 21.25 0 1 38 38 NA 4
0 1 20.74 30.95 0 0 39 39 NA 4
1 1 42.12 21.36 0 1 40 40 NA 4
0 0 61.66 24.44 0 0 41 41 NA 4
0 0 49.49 27.60 0 1 42 42 NA 4
0 0 79.56 18.66 0 1 43 43 NA 4
1 1 74.95 34.03 0 1 44 44 NA 4
1 1 59.07 21.22 0 1 45 45 NA 4
0 1 83.78 29.84 1 1 46 46 NA 4
1 0 66.83 29.65 0 0 47 47 NA 4
0 0 59.39 18.58 1 0 48 48 NA 4
1 1 68.71 22.45 1 1 49 49 NA 4
1 1 77.53 25.94 1 1 50 50 NA 4
0 0 49.84 32.03 1 0 51 51 NA 4
1 0 72.36 24.09 0 1 52 52 NA 4
0 0 51.56 21.46 0 1 53 53 NA 4
0 0 50.74 27.81 0 0 54 54 NA 4
0 1 26.60 30.84 0 1 55 55 NA 4
1 0 37.64 23.98 0 0 56 56 NA 4
1 0 46.18 26.24 0 1 57 57 NA 4
1 0 42.56 21.13 0 1 58 58 NA 4
0 0 59.95 19.84 1 1 59 59 NA 4
0 0 60.55 20.57 0 1 60 60 NA 4
0 1 29.96 24.77 0 1 61 61 NA 4
0 0 50.08 24.23 0 1 62 62 NA 4
0 1 59.52 18.64 1 1 63 63 NA 4
1 0 68.77 24.94 0 1 64 64 NA 4
0 1 38.40 23.47 1 1 65 65 NA 4
1 1 45.12 26.13 0 0 66 66 NA 4
1 0 53.65 20.62 1 1 67 67 NA 4
0 0 64.51 32.66 1 0 68 68 NA 4
0 0 52.45 36.01 0 1 69 69 NA 4
0 0 47.76 20.24 0 1 70 70 NA 4
1 1 47.66 26.29 0 1 71 71 NA 4
0 0 47.99 19.93 1 1 72 72 NA 4
0 0 52.68 26.93 0 1 73 73 NA 4
0 0 49.76 21.88 0 1 74 74 NA 4
1 0 68.33 21.01 0 1 75 75 NA 4
0 0 54.29 32.38 0 1 76 76 NA 4
1 1 45.41 22.89 1 0 77 77 NA 4
1 0 49.79 32.00 0 1 78 78 NA 4
1 1 45.89 21.74 0 1 79 79 NA 4
0 1 65.40 17.77 0 0 80 80 NA 4
1 0 55.02 29.13 1 0 81 81 NA 4
1 0 62.89 26.02 1 1 82 82 NA 4
0 1 71.41 23.34 1 1 83 83 NA 4
0 0 71.56 25.32 0 1 84 84 NA 4
1 1 52.78 28.00 0 1 85 85 NA 4
0 0 50.65 31.09 0 1 86 86 NA 4
1 1 51.59 20.34 0 1 87 87 NA 4
1 0 51.21 22.87 0 1 88 88 NA 4
0 1 55.11 21.49 0 1 89 89 NA 4
0 0 57.04 27.25 0 1 90 90 NA 4
0 1 59.26 23.94 1 0 91 91 NA 4
1 1 52.44 27.56 0 0 92 92 NA 4
1 1 66.35 31.15 0 1 93 93 NA 4
1 1 72.68 21.47 1 1 94 94 NA 4
0 1 62.00 20.36 0 0 95 95 NA 4
1 0 61.34 24.49 0 1 96 96 NA 4
0 0 73.58 25.33 0 1 97 97 NA 4
0 0 69.49 17.23 0 0 98 98 NA 4
1 1 70.98 30.34 1 1 99 99 NA 4
0 0 51.81 23.47 1 0 100 100 NA 4
1 1 57.75 24.68 0 0 101 101 NA 4
1 1 65.96 23.72 0 1 102 102 NA 4
0 0 42.13 26.81 0 1 103 103 NA 4
1 1 81.98 23.89 1 1 104 104 NA 4
0 1 64.40 25.11 0 0 105 105 NA 4
0 1 42.23 24.42 0 1 106 106 NA 4
0 0 69.90 24.90 0 1 107 107 NA 4
0 1 40.20 19.67 0 1 108 108 NA 4
0 0 61.96 30.50 0 0 109 109 NA 4
1 1 63.20 24.34 0 1 110 110 NA 4
1 1 51.04 31.34 0 1 111 111 NA 4
0 0 43.06 28.15 0 1 112 112 NA 4
0 0 76.62 20.39 0 1 113 113 NA 4
1 0 71.26 21.80 0 1 114 114 NA 4
1 1 57.65 20.03 1 1 115 115 NA 4
1 1 53.92 23.94 1 0 116 116 NA 4
0 0 47.89 20.92 1 1 117 117 NA 4
1 0 79.31 30.22 0 0 118 118 NA 4
1 0 41.89 29.45 0 1 119 119 NA 4
1 0 68.64 27.37 1 0 120 120 NA 4
1 1 53.77 29.80 0 0 121 121 NA 4
1 0 61.11 18.35 0 1 122 122 NA 4
0 1 57.81 27.51 1 1 123 123 NA 4
0 1 62.97 28.51 0 1 124 124 NA 4
0 0 44.35 24.64 0 1 125 125 NA 4
0 0 47.26 26.53 1 1 126 126 NA 4
1 0 77.66 25.19 1 1 127 127 NA 4
0 0 40.83 25.05 1 1 128 128 NA 4
1 1 36.58 31.22 1 1 129 129 NA 4
0 0 58.47 18.45 0 1 130 130 NA 4
0 0 60.14 23.27 0 1 131 131 NA 4
0 0 45.01 14.48 0 1 132 132 NA 4
0 1 66.43 23.97 0 1 133 133 NA 4
0 0 44.86 25.20 0 1 134 134 NA 4
1 1 62.11 29.63 0 0 135 135 NA 4
0 1 42.81 32.56 0 1 136 136 NA 4
1 1 68.79 30.95 0 1 137 137 NA 4
0 0 51.76 24.11 0 0 138 138 NA 4
0 0 39.60 24.63 1 1 139 139 NA 4
0 1 68.51 21.97 0 1 140 140 NA 4
1 1 55.04 28.30 0 1 141 141 NA 4
0 0 58.47 24.47 0 0 142 142 NA 4
1 1 65.16 32.87 0 1 143 143 NA 4
0 0 45.48 26.75 1 1 144 144 NA 4
1 0 51.01 30.08 0 0 145 145 NA 4
1 1 67.36 25.21 0 0 146 146 NA 4
0 1 63.68 33.05 0 1 147 147 NA 4
1 0 73.62 26.22 0 1 148 148 NA 4
0 0 54.74 29.80 0 1 149 149 NA 4
0 0 62.59 27.61 0 1 150 150 NA 4
1 1 50.92 22.08 0 1 151 151 NA 4
0 0 68.98 21.65 1 1 152 152 NA 4
0 0 51.87 21.88 0 1 153 153 NA 4
1 1 55.15 24.40 0 1 154 154 NA 4
0 0 58.46 23.15 0 0 1 1 NA 5
1 1 54.25 27.69 0 1 2 2 NA 5
0 0 36.97 20.99 0 1 3 3 NA 5
0 1 43.45 23.35 0 1 4 4 NA 5
0 1 67.10 25.80 1 1 5 5 NA 5
0 0 48.38 23.39 0 1 6 6 NA 5
0 1 38.67 20.48 0 1 7 7 NA 5
0 0 43.82 27.46 0 1 8 8 NA 5
1 1 69.94 24.49 0 0 9 9 NA 5
1 0 69.39 25.60 0 1 10 10 NA 5
0 0 65.10 25.48 0 0 11 11 NA 5
0 0 42.58 27.52 0 0 12 12 NA 5
0 0 64.73 26.63 0 1 13 13 NA 5
0 0 51.04 25.51 0 1 14 14 NA 5
1 0 60.48 26.80 0 1 15 15 NA 5
0 0 60.29 21.11 0 0 16 16 NA 5
1 1 55.69 27.43 0 1 17 17 NA 5
1 1 63.62 29.89 0 1 18 18 NA 5
0 1 60.86 20.84 0 1 19 19 NA 5
0 0 65.19 22.73 0 1 20 20 NA 5
1 0 50.11 21.59 0 1 21 21 NA 5
0 0 54.79 23.67 0 1 22 22 NA 5
1 0 47.41 22.66 1 1 23 23 NA 5
0 1 49.78 23.22 0 0 24 24 NA 5
1 1 66.67 19.62 0 1 25 25 NA 5
1 0 50.84 38.24 1 1 26 26 NA 5
1 1 52.27 22.28 0 0 27 27 NA 5
1 1 68.76 31.04 1 1 28 28 NA 5
0 0 48.55 23.08 1 1 29 29 NA 5
1 0 54.37 16.22 0 1 30 30 NA 5
1 0 42.83 24.44 0 1 31 31 NA 5
0 0 51.87 24.84 0 1 32 32 NA 5
0 0 56.15 25.55 1 1 33 33 NA 5
1 1 68.13 25.12 0 0 34 34 NA 5
0 0 51.13 26.82 0 1 35 35 NA 5
1 0 66.58 27.01 0 1 36 36 NA 5
0 0 72.25 30.75 0 0 37 37 NA 5
1 0 30.09 33.08 0 1 38 38 NA 5
0 1 20.74 30.95 0 0 39 39 NA 5
1 1 42.12 21.36 0 1 40 40 NA 5
0 0 61.66 24.44 0 0 41 41 NA 5
0 0 49.49 27.60 0 1 42 42 NA 5
0 0 79.56 18.66 0 1 43 43 NA 5
1 1 74.95 34.03 0 1 44 44 NA 5
1 1 59.07 21.22 0 1 45 45 NA 5
0 1 83.78 29.84 1 1 46 46 NA 5
1 0 66.83 22.78 0 0 47 47 NA 5
0 0 59.39 18.58 1 0 48 48 NA 5
1 1 68.71 22.45 1 1 49 49 NA 5
1 1 77.53 25.94 1 1 50 50 NA 5
0 0 49.84 32.03 1 0 51 51 NA 5
1 0 63.31 29.61 0 1 52 52 NA 5
0 0 51.56 21.46 0 1 53 53 NA 5
0 0 50.74 27.81 0 0 54 54 NA 5
0 1 54.85 32.30 0 1 55 55 NA 5
1 0 37.64 23.98 0 0 56 56 NA 5
1 0 46.18 22.76 0 1 57 57 NA 5
1 0 42.56 21.13 0 1 58 58 NA 5
0 0 59.95 19.84 1 1 59 59 NA 5
0 0 60.55 20.57 0 1 60 60 NA 5
0 1 29.96 25.80 0 1 61 61 NA 5
0 0 50.08 24.23 0 1 62 62 NA 5
0 1 59.52 15.48 1 1 63 63 NA 5
1 0 68.77 24.94 0 1 64 64 NA 5
0 1 38.40 23.47 1 1 65 65 NA 5
1 1 45.12 28.00 0 0 66 66 NA 5
1 0 53.65 20.62 1 1 67 67 NA 5
0 0 57.35 23.95 1 0 68 68 NA 5
0 0 52.45 36.01 0 1 69 69 NA 5
0 0 47.76 26.12 0 1 70 70 NA 5
1 1 47.66 26.29 0 1 71 71 NA 5
0 0 47.99 19.93 1 1 72 72 NA 5
0 0 52.68 26.93 0 1 73 73 NA 5
0 0 49.76 21.88 0 1 74 74 NA 5
1 0 38.65 24.90 0 1 75 75 NA 5
0 0 54.29 32.38 0 1 76 76 NA 5
1 1 45.41 22.89 1 0 77 77 NA 5
1 0 49.79 32.00 0 1 78 78 NA 5
1 1 45.89 21.74 0 1 79 79 NA 5
0 1 65.40 17.77 0 0 80 80 NA 5
1 0 55.02 29.13 1 0 81 81 NA 5
1 0 62.89 26.02 1 1 82 82 NA 5
0 1 41.31 20.48 1 1 83 83 NA 5
0 0 71.56 25.32 0 1 84 84 NA 5
1 1 52.78 28.00 0 1 85 85 NA 5
0 0 50.65 31.09 0 1 86 86 NA 5
1 1 51.59 20.34 0 1 87 87 NA 5
1 0 51.21 22.87 0 1 88 88 NA 5
0 1 55.11 21.49 0 1 89 89 NA 5
0 0 57.04 27.25 0 1 90 90 NA 5
0 1 59.26 23.94 1 0 91 91 NA 5
1 1 52.44 27.56 0 0 92 92 NA 5
1 1 66.35 31.15 0 1 93 93 NA 5
1 1 72.68 21.47 1 1 94 94 NA 5
0 1 62.00 20.36 0 0 95 95 NA 5
1 0 61.34 24.49 0 1 96 96 NA 5
0 0 73.58 25.33 0 1 97 97 NA 5
0 0 69.49 17.23 0 0 98 98 NA 5
1 1 70.98 30.34 1 1 99 99 NA 5
0 0 51.81 23.47 1 0 100 100 NA 5
1 1 57.75 24.68 0 0 101 101 NA 5
1 1 65.96 23.72 0 1 102 102 NA 5
0 0 42.13 26.81 0 1 103 103 NA 5
1 1 81.98 23.89 1 1 104 104 NA 5
0 1 64.40 25.11 0 0 105 105 NA 5
0 1 42.23 24.42 0 1 106 106 NA 5
0 0 69.90 24.90 0 1 107 107 NA 5
0 1 50.23 25.52 0 1 108 108 NA 5
0 0 61.96 30.50 0 0 109 109 NA 5
1 1 63.20 24.57 0 1 110 110 NA 5
1 1 51.04 31.34 0 1 111 111 NA 5
0 0 43.06 19.68 0 1 112 112 NA 5
0 0 76.62 20.39 0 1 113 113 NA 5
1 0 71.26 21.80 0 1 114 114 NA 5
1 1 57.65 17.22 1 1 115 115 NA 5
1 1 53.92 23.94 1 0 116 116 NA 5
0 0 47.89 20.92 1 1 117 117 NA 5
1 0 79.31 30.22 0 0 118 118 NA 5
1 0 41.89 29.45 0 1 119 119 NA 5
1 0 68.64 27.37 1 0 120 120 NA 5
1 1 53.77 29.80 0 0 121 121 NA 5
1 0 61.11 18.35 0 1 122 122 NA 5
0 1 57.81 21.60 1 1 123 123 NA 5
0 1 55.33 29.52 0 1 124 124 NA 5
0 0 44.35 24.64 0 1 125 125 NA 5
0 0 47.26 26.53 1 1 126 126 NA 5
1 0 77.66 25.19 1 1 127 127 NA 5
0 0 40.83 25.05 1 1 128 128 NA 5
1 1 36.58 31.22 1 1 129 129 NA 5
0 0 58.47 18.45 0 1 130 130 NA 5
0 0 60.14 23.27 0 1 131 131 NA 5
0 0 45.01 24.26 0 1 132 132 NA 5
0 1 66.43 23.97 0 1 133 133 NA 5
0 0 44.86 25.20 0 1 134 134 NA 5
1 1 62.11 29.63 0 0 135 135 NA 5
0 1 42.81 32.56 0 1 136 136 NA 5
1 1 68.79 30.95 0 1 137 137 NA 5
0 0 66.53 31.10 0 0 138 138 NA 5
0 0 39.60 24.63 1 1 139 139 NA 5
0 1 68.51 21.97 0 1 140 140 NA 5
1 1 55.04 28.30 0 1 141 141 NA 5
0 0 58.47 24.47 0 0 142 142 NA 5
1 1 65.16 21.49 0 1 143 143 NA 5
0 0 45.48 28.26 1 1 144 144 NA 5
1 0 51.01 30.08 0 0 145 145 NA 5
1 1 67.36 25.21 0 0 146 146 NA 5
0 1 56.67 24.07 0 1 147 147 NA 5
1 0 73.62 26.22 0 1 148 148 NA 5
0 0 54.74 29.80 0 1 149 149 NA 5
0 0 62.59 27.61 0 1 150 150 NA 5
1 1 50.92 22.08 0 1 151 151 NA 5
0 0 68.98 21.65 1 1 152 152 NA 5
0 0 51.87 21.88 0 1 153 153 NA 5
1 1 55.15 24.40 0 1 154 154 NA 5

Convert to mids Object

To convert our data frame of imputed values to a mids object, we’ll use the as.mids() function from the mice package.

You should notice in our imported data frame (shown above) that rows are defined by individuals nested within imputed datasets. Our example data didn’t have an ID variable, so we created idvar. In most cases, the data that you’re working with will already have this defined, so you can use that variable name instead. The imputed datasets are identified by mi_m. This was created by Stata when we created our data, although it was renamed slightly (from _mi_m) by the clean_names() function from the janitor package.

Let’s go ahead and run the as.mids() function to generate an object called mice_data.

mice_data <- mice::as.mids(
  long = imputed_data,
  .imp = "mi_m",
  .id = "idvar"
)

Now let’s check the class of our new object to confirm that it’s a mids object.

class(mice_data)
[1] "mids"

Testing Result

Just to confirm that everything worked correctly, let’s run a logistic regression model in both R and Stata and compare the results. Because this tutorial is not focused on model fitting, I’ll avoid a detailed description of the code so that we can concentrate on comparing the output.

We’ll start by running our model in R.

with(
  data = mice_data,
  expr = glm(attack ~ age + bmi + smokes + hsgrad + female,
             family = binomial)
) |>
  mice::pool() |>
  summary()
         term    estimate  std.error  statistic        df     p.value
1 (Intercept) -4.63742037 1.68536791 -2.7515775  64.34636 0.007695550
2         age  0.02920851 0.01626988  1.7952507  79.49685 0.076414151
3         bmi  0.08757460 0.04825944  1.8146623  57.57101 0.074786738
4      smokes  1.15070031 0.35201001  3.2689420 145.41028 0.001347439
5      hsgrad  0.14362175 0.39918146  0.3597906 145.52376 0.719525306
6      female -0.09937255 0.41369211 -0.2402090 140.22325 0.810519081

Now let’s run our model in Stata.

mi estimate: logit attack age bmi smokes hsgrad female
Multiple-imputation estimates                   Imputations       =          5
Logistic regression                             Number of obs     =        154
                                                Average RVI       =     0.0704
                                                Largest FMI       =     0.2031
DF adjustment:   Large sample                   DF:     min       =     112.02
                                                        avg       = 114,196.30
                                                        max       = 398,328.40
Model F test:       Equal FMI                   F(   5, 2207.1)   =       3.09
Within VCE type:          OIM                   Prob > F          =     0.0088

------------------------------------------------------------------------------
      attack | Coefficient  Std. err.      t    P>|t|     [95% conf. interval]
-------------+----------------------------------------------------------------
         age |   .0292085   .0162699     1.80   0.074    -.0028604    .0612774
         bmi |   .0875746   .0482595     1.81   0.072    -.0080451    .1831943
      smokes |     1.1507   .3520101     3.27   0.001     .4607702     1.84063
      hsgrad |   .1436217   .3991815     0.36   0.719    -.6387621    .9260056
      female |  -.0993726   .4136922    -0.24   0.810    -.9103186    .7115734
       _cons |   -4.63742   1.685369    -2.75   0.007    -7.970059   -1.304782
------------------------------------------------------------------------------

The results are similar enough to support the conclusion that our conversion worked as expected. If you look closely, however, you will notice that the estimates across software are not identical. This is because they use slightly different conventions for inferential statistics when working with imputed data. The discrepancy also highlights two important points to consider when implementing multiple imputation (MI) methods:

  1. Differences are less pronounced with larger samples and/or more imputations.
  2. It’s important to always report the MI method and software used in publications.